Loading web-font TeX/Math/Italic

Recent Comments

Header Ads

Teknik Substitusi Integral Fungsi Aljabar

teknik substitusi integral fungsi aljabar

Jika anda menggunakan HP maka gunakan mode LANDSCAPE agar equation tidak terpotong

LANGKAH-LANGKAH MENGGUNAKAN TEKNIK SUBSTITUSI PADA INTEGRAL FUNGSI ALJABAR SECARA UMUM

  1. Fungsi yang mengandung pangkat tertinggi kita misalkan dengan u. Apabila kedua fungsi pangkatnya sama maka fungsi yang lebih kompleks kita misalkan sebagai u.
  2. Turunkan u terhadap x dan kita dapatkan hasilnya (misal a) kemudian ubah ke bentuk dx\displaystyle\frac{d u}{d x}=a \rightarrow d x=\frac{d u}{a}.
  3. Substitusikan u dan dx ke soal kemudian diintegralkan.
  4. Ubah kembali fungsi u menjadi fungsi awal.

  5. Integral substitusi dapat juga dirumuskan sebagai berikut:
\int {f\left( x \right)\;dx = \int {\frac{{f\left( u \right)}}{{u'}}} } \;du
    dengan u' turunan dari u terhadap x.

    Contoh Soal
    Soal 1
    \displaystyle\int x\left(3 x^{2}+5\right)^{4} d x=...
    Pembahasan:
    {\text{misalkan }}u = 3{x^2} + 5,{\text{ maka }}\frac{{du}}{{dx}} = 6x{\text{ atau }}dx = \frac{{du}}{{6x}}, {\text{ sehingga: }}
    \begin{align} &\int {x{{\left( {3{x^2} + 5} \right)}^4}\;dx} \hfill \\ &= \int {x \cdot {u^4}\;\frac{{du}}{{6x}}} \hfill \\ &= \frac{1}{6}\int {{u^4}\;du} \hfill \\ &= \frac{1}{6} \cdot \frac{{{u^5}}}{5} + c \hfill \\ &= \boxed{\frac{1}{{30}}{\left( {3{x^2} + 5} \right)^5} + c} \hfill \\ \end{align}

    {\text{Dengan menggunakan rumus:}}
    \begin{align} &\int {x{{\left( {3{x^2} + 5} \right)}^4}\;dx} \hfill \\ &= \int {\frac{{x{{\left( {3{x^2} + 5} \right)}^4}}}{{6x}}} \;d({3{x^2} + 5}) \hfill \\ &= \frac{1}{{6 \cdot 5}}{\left( {3{x^2} + 5} \right)^5} + c \hfill \\ &= \boxed{\frac{1}{{30}}{{\left( {3{x^2} + 5} \right)}^5} + c} \hfill \\ \end{align}

    Soal 2
    \displaystyle\int\left(x^{2}+3 x\right)^{4}(2 x+3) d x=...
    Pembahasan:
    \begin{align} &u = {x^2} + 3x \hfill \\ &\frac{{du}}{{dx}} = 2x + 3 \to dx = \frac{{du}}{{2x + 3}} \hfill \\ \end{align}
    \begin{align} &\int {{u^4}\left( {2x + 3} \right)} \frac{{du}}{{2x + 3}} \hfill \\ &= \frac{1}{5}{u^5} + c \hfill \\ &= \boxed{\frac{1}{5}{\left( {{x^2} + 3x} \right)^5} + c} \hfill \\ \end{align}

    {\text{Dengan menggunakan rumus:}}
    \begin{align} &= \int {\frac{{{{\left( {{x^2} + 3x} \right)}^4}}}{{\left( {2x + 3} \right)}}\left( {2x + 3} \right)\;d({x^2} + 3x}) \hfill \\ &= \boxed{\frac{1}{5}{{\left( {{x^2} + 3x} \right)}^5} + c} \hfill \\ \end{align}

    Soal 3
    \displaystyle\int\left(4 x-6 x^{2}\right) \sqrt{x^{3}-x^{2}-1} dx=...
    Pembahasan:
    \begin{align} &u = {x^3} - {x^2} - 1 \hfill \\ &\frac{{du}}{{dx}} = 3{x^2} - 2x \to dx = \frac{{du}}{{3{x^2} - 2x}} \hfill \\ \end{align}
    \begin{align} &u = {x^3} - {x^2} - 1 \hfill \\ &\frac{{du}}{{dx}} = 3{x^2} - 2x \to dx = \frac{{du}}{{3{x^2} - 2x}} \hfill \\ &= \int {\left( {4x - 6{x^2}} \right)} \sqrt u \frac{{du}}{{3{x^2} - 6x}} \hfill \\ &= \int { - 2\left( {3{x^2} - 2x} \right){u^{\frac{1}{2}}}} \frac{{du}}{{3{x^2} - 2x}} \hfill \\ &= - 2\int {{u^{\frac{1}{2}}}\;du} \hfill \\ &= \frac{{ - 2}}{{\frac{3}{2}}}{u^{\frac{3}{2}}} + c \hfill \\ &= - \frac{4}{3}u\sqrt u + c \hfill \\ &= \boxed{ - \frac{4}{3}\left( {{x^3} - {x^2} - 1} \right)\sqrt {{x^3} - {x^2} - 1} + c} \hfill \\ \end{align}

    {\text{Dengan menggunakan rumus:}}
    \begin{align} &\int {\left( {4x - 6{x^2}} \right)\frac{{{{\left( {{x^3} - {x^2} - 1} \right)}^{\frac{1}{2}}}}}{{\left( {3{x^2} - 2x} \right)}}} \;d\left( {{x^3} - {x^2} - 1} \right) \hfill \\ &= - 2\int {{{\left( {{x^3} - {x^2} - 1} \right)}^{\frac{1}{2}}}} \;d\left( {{x^3} - {x^2} - 1} \right) \hfill \\ &= - 2 \cdot \frac{2}{3}{\left( {{x^3} - {x^2} - 1} \right)^{\frac{3}{2}}} + c \hfill \\ &= \boxed{ - \frac{4}{3}\left( {{x^3} - {x^2} - 1} \right)\sqrt {{x^3} - {x^2} - 1} + c} \hfill \\ \end{align}

    Soal 4
    \displaystyle\int \frac{x^{3}}{\left(x^{4}-1\right)^{20}} d x=...
    Pembahasan:
    \begin{align} &u = {x^4} - 1 \hfill \\ &\frac{{du}}{{dx}} = 4{x^3} \to dx = \frac{{du}}{{4{x^3}}} \hfill \\ \end{align}
    \begin{align} &= \int {\frac{{{x^3}}}{{{u^{20}}}}} \frac{{du}}{{4{x^3}}} \hfill \\ &= \frac{1}{4}\int {{u^{ - 20}}\; + c} \hfill \\ &= \frac{1}{4} \cdot \frac{1}{{\left( { - 19} \right)}}{u^{ - 19}} + c \hfill \\ &= \boxed{ - \frac{1}{{76{{\left( {{x^4} - 1} \right)}^{ - 19}}}} + c} \hfill \\ \end{align}

    {\text{Dengan menggunakan rumus:}}
    \begin{align} &= \int {{x^3}\frac{{{{\left( {{x^4} - 1} \right)}^{ - 20}}}}{{4{x^3}}}d} \left( {{x^4} - 1} \right) \hfill \\ &= \frac{1}{4} \cdot \frac{1}{{\left( { - 19} \right)}} \cdot {\left( {{x^4} - 1} \right)^{ - 19}} + c \hfill \\ &= \boxed{ - \frac{1}{{76{{\left( {{x^4} - 1} \right)}^{ - 19}}}} + c} \hfill \\ \end{align}

    Soal 5
    \displaystyle\int \frac{3 x^{2}-4}{\sqrt[4]{2 x^{3}-8 x+3}} d x=...
    Pembahasan:
    \begin{align} &u = 2{x^3} - 8x + 3 \hfill \\ &\frac{{du}}{{dx}} = 6{x^2} - 8 \to dx = \frac{{du}}{{6{x^2} - 8}} \hfill \\ &= \int {\left( {3{x^2} - 4} \right){u^{ - \frac{1}{4}}}} \frac{{du}}{{2\left( {3{x^2} - 4} \right)}} \hfill \\ &= \frac{1}{2}\int {{u^{ - \frac{1}{4}}}\;} du \hfill \\ &= \frac{1}{2} \cdot \frac{4}{3}{u^{\frac{3}{4}}} + c \hfill \\ &= \boxed{\frac{2}{3}\sqrt[4]{{{{\left( {2{x^3} - 8x + 3} \right)}^3}}} + c} \hfill \\ \end{align}

    {\text{Dengan menggunakan rumus:}}
    \begin{align} &= \int {\left( {3{x^2} - 4} \right)\frac{{{{\left( {2{x^3} - 8x + 3} \right)}^{ - \frac{1}{4}}}}}{{\left( {6{x^2} - 8} \right)}}} \;d\left( {2{x^3} - 8x + 3} \right) \hfill \\ &= \frac{1}{2} \cdot \frac{4}{3}{\left( {2{x^3} - 8x + 3} \right)^{\frac{3}{4}}} + c \hfill \\ &= \boxed{\frac{2}{3}\sqrt[4]{{{{\left( {2{x^3} - 8x + 3} \right)}^3}}} + c} \hfill \\ \end{align}

    Soal 6
    \displaystyle\int_{0}^{4} 3 x \sqrt{x^{2}+9} d x=...
    Pembahasan:
    \begin{align} &u = {x^2} + 9 \hfill \\ &\frac{{du}}{{dx}} = 2x \to dx = \frac{{du}}{{2x}} \hfill \\ &= \int\limits_0^4 {3x \cdot {u^{\frac{1}{2}}}} \frac{{du}}{{2x}} \hfill \\ &= \left. {\frac{3}{2} \cdot \frac{2}{3}{u^{\frac{3}{2}}}} \right|_{x = 0}^{x = 4} \hfill \\ &= \left. {u\sqrt u } \right|_{x = 0}^{x = 4} \hfill \\ &= \left. {\left( {{x^2} + 9} \right)\sqrt {{x^2} + 9} } \right|_0^4 \hfill \\ &= \left( {\left( {{4^2} + 9} \right)\sqrt {{4^2} + 9} } \right) - \left( {\left( {{0^2} + 9} \right)\sqrt {{0^2} + 9} } \right) \hfill \\ &= 125 - 27 \hfill \\ &= \boxed{98} \hfill \\\\ &{\text{Cara 2}} \hfill \\ &\left. {u\sqrt u } \right|_{x = 0}^{x = 4}{\text{ ganti batas }}x{\text{ dengan batas }}u \hfill \\ &u = {x^2} + 9 \hfill \\ &{\text{untuk }}x{\text{ = 0}} \to u = {0^2} + 9 = 9 \hfill \\ &{\text{untuk }}x{\text{ = 4}} \to u = {4^2} + 9 = 25 \hfill \\ &{\text{Sehingga bentuknya menjadi}} \hfill \\ &{\text{ = }}\left. {u\sqrt u } \right|_9^{25} \hfill \\ &= \left( {25\sqrt {25} } \right) - \left( {9\sqrt 9 } \right) \hfill \\ &= 125 - 27 \hfill \\ &= \boxed{98} \hfill \\ \end{align}

    Soal 7
    \displaystyle\int {2x\sqrt {x + 3} } \;dx=...
    Pembahasan:
    \begin{align} &u = x + 3 \hfill \\ &\frac{{du}}{{dx}} = 1 \to dx = du \hfill \\ &= \int {2x \cdot {u^{\frac{1}{2}}}\;du} \hfill \\ \end{align}
    Perhatikan bentuk di atas masih mengandung x, sehingga kita perlu memanipulasi bentuk x menjadi u.
    \begin{align} &u = x + 3 \to x = u - 3 \hfill \\ &= \int {2\left( {u - 3} \right)} \cdot {u^{\frac{1}{2}}}\;du \hfill \\ &= 2\int {{u^{\frac{3}{2}}} - 3{u^{^{\frac{1}{2}}}}} \;du \hfill \\ &= 2\left( {\frac{2}{5}{u^{\frac{5}{2}}} - 3 \cdot \frac{2}{3}{u^{\frac{3}{2}}}} \right) + c \hfill \\ &= 4{u^{\frac{3}{2}}}\left( {\frac{1}{5}u - 1} \right)\; + c\;\;\quad \left\{ {2{u^{\frac{3}{2}}}{\text{ dikeluarkan}}} \right\} \hfill \\ &= \frac{4}{5}u\sqrt u \left( {u - 5} \right) + c\;\;\quad \left\{ {{\text{samakan penyebut}}} \right\} \hfill \\ &= \boxed{\frac{4}{5}\left( {x - 2} \right)\left( {x + 3} \right)\sqrt {\left( {x + 3} \right)} + c} \hfill \\\\ &{\text{Cara alternatif}} \hfill \\ &\int {2x\sqrt {x + 3} } \;dx \hfill \\ &= 2\int {\left( {\left( {x + 3} \right) - 3} \right)\sqrt {x + 3} } \;dx \hfill \\ &= 2\left[ {\int {\left( {x + 3} \right)\sqrt {x + 3} } \;dx - 3\int {\sqrt {x + 3} } \;dx} \right] \hfill \\ &= 2\left[ {\int {{{\left( {x + 3} \right)}^{\frac{3}{2}}}dx - 3\int {{{\left( {x + 3} \right)}^{\frac{1}{2}}}} \;dx} } \right] \hfill \\ &= 2\left[ {\frac{2}{5}{{\left( {x + 3} \right)}^{\frac{5}{2}}} - 3 \cdot \frac{2}{3}{{\left( {x + 3} \right)}^{\frac{3}{2}}}} \right] + c \hfill \\ &= 4{\left( {x + 3} \right)^{\frac{3}{2}}}\left[ {\frac{{\left( {x + 3} \right)}}{5} - 1} \right] + c \hfill \\ &= \boxed{\frac{4}{5}\left( {x - 2} \right)\left( {x + 3} \right)\sqrt {\left( {x + 3} \right)} + c} \hfill \\ \end{align}

    Soal 8
    \displaystyle\int {\frac{{x\;dx}}{{\sqrt {1 + x} }}} = ...
    Pembahasan:
    Jika kalian sudah memahami soal no 7 dengan baik maka dengan cara alternatif kita dapatkan bentuk:
    \begin{align} &= \int {\frac{{1 + x - 1}}{{\sqrt {1 + x} }}} \;dx \hfill \\ &= \int {\left( {1 + x} \right)} {\left( {1 + x} \right)^{ - \frac{1}{2}}}\;dx - \int {{{\left( {1 + x} \right)}^{ - \frac{1}{2}}}\;dx} \hfill \\ &= \int {{{\left( {1 + x} \right)}^{\frac{1}{2}}}\;dx} - \int {{{\left( {1 + x} \right)}^{ - \frac{1}{2}}}\;dx} \hfill \\ &= \frac{2}{3}{\left( {1 + x} \right)^{\frac{3}{2}}} - 2{\left( {1 + x} \right)^{\frac{1}{2}}} + c \hfill \\ &= 2{\left( {1 + x} \right)^{\frac{1}{2}}}\left( {\frac{{\left( {1 + x} \right)}}{3} - 1} \right) + c \hfill \\ &= \boxed{\frac{2}{3}\left( {x - 2} \right)\sqrt {1 + x} + c} \hfill \\ \end{align}

    Soal 9
    Diketahui \displaystyle\int\limits_0^2 {xf\left( {{x^2} - 1} \right)\;dx = 6}. Nilai dari \displaystyle\int\limits_{ - 1}^3 {f\left( x \right)\;dx = ...}
    Pembahasan:
    \begin{align} &u = {x^2} - 1 \hfill \\ &\frac{{du}}{{dx}} = 2x \to dx = \frac{{du}}{{2x}} \hfill \\ &{\text{untuk }}x = 0 \to u = - 1{\text{ }} \hfill \\ &{\text{untuk }}x = 2 \to u = 3 \hfill \\ &{\text{Sehingga bentuknya menjadi:}} \hfill \\ &\int\limits_{ - 1}^3 {xf\left( u \right)\;\frac{{du}}{{2x}}} = 6 \hfill \\ &\frac{1}{2}\int\limits_{ - 1}^3 {f\left( u \right)\;du} = 6 \hfill \\ &\int\limits_{ - 1}^3 {f\left( u \right)\;du} = 12 \hfill \\ &\boxed{\int\limits_{ - 1}^3 {f\left( x \right)\;dx} = 12} \hfill \\ \end{align}

    Soal 10
    \displaystyle\int \frac{3 x^{2}+2}{x^{3}+2 x} d x=...
    Pembahasan:
    \begin{align} &u = {x^3} + 2x \hfill \\ &\frac{{du}}{{dx}} = 3{x^2} + 2 \to dx = \frac{{du}}{{3{x^2} + 2}} \hfill \\ &= \int {\frac{{3{x^2} + 2}}{u}} \frac{{du}}{{3{x^2} + 2}} \hfill \\ &= \int {\frac{1}{u}\;du} \hfill \\ &= \ln \left| u \right| + c \hfill \\ &= \boxed{\ln \left| {{x^3} + 2x} \right| + c} \hfill \\ \end{align}

    Posting Komentar

    0 Komentar

    Entri yang Diunggulkan